Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Global health & medicine ; 5(1):5-14, 2023.
Article in English | EuropePMC | ID: covidwho-2281170

ABSTRACT

Summary As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19;proper infection prevention practices reduced these risks.

2.
Sci Total Environ ; : 160317, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2235224

ABSTRACT

Wastewater-based epidemiology (WBE) complements the clinical surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants' distribution in populations. Many developed nations have established national and regional WBE systems; however, governance and budget constraints could be obstacles for low- and middle-income countries. An urgent need thus exists to identify hotspots to serve as sentinel sites for WBE. We hypothesized that representative wastewater treatment plants (WWTPs) in two international gateway cities, Bangkok and Phuket, Thailand, could be sentineled for SARS-CoV-2 and its variants to reflect the clinical distribution patterns at city level and serve as early indicators of new variants entering the country. Municipal wastewater samples (n = 132) were collected from eight representative municipal WWTPs in Bangkok and Phuket during 19 sampling events from October 2021 to March 2022, which were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the US CDC N1 and N2 multiplex and variant (Alpha, Delta, and Omicron BA.1 and BA.2) singleplex assays. The variant detection ratios from Bangkok and Phuket followed similar trends to the national clinical testing data, and each variant's viral loads agreed with the daily new cases (3-d moving average). Omicron BA.1 was detected in Phuket wastewater prior to Bangkok, possibly due to Phuket's WWTPs serving tourist communities. We found that the Omicron BA.1 and BA.2 viral loads predominantly drove the SARS-CoV-2 resurgence. We also noted a shifting pattern in the Bangkok WBE from a 22-d early warning in early 2021 to a near real-time pattern in late 2021. The potential application of tourist hotspots for WBE to indicate the arrival of new variants and re-emerging or unprecedented infectious agents could support tourism-dependent economies by complementing the reduced clinical regulations while maintaining public health protection via wastewater surveillance.

3.
Western Pac Surveill Response J ; 13(1): 1-5, 2022.
Article in English | MEDLINE | ID: covidwho-1835497

ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in China and subsequently spread worldwide. In Japan, many clusters occurred during the first wave in 2020. We describe the investigation of an early outbreak in a Tokyo hospital. Methods: A COVID-19 outbreak occurred in two wards of the hospital from April to early May 2020. Confirmed cases were individuals with laboratory-confirmed SARS-CoV-2 infection linked to Wards A and B, and contacts were patients or workers in Wards A or B 2 weeks before the index cases developed symptoms. All contacts were tested, and cases were interviewed to determine the likely route of infection and inform the development of countermeasures to curb transmission. Results: There were 518 contacts, comprising 472 health-care workers (HCWs) and 46 patients, of whom 517 were tested. SARS-CoV-2 infection was confirmed in 42 individuals (30 HCWs and 12 patients). The proportions of SARS-CoV-2 infections in HCWs were highest among surgeons, nurses, nursing assistants and medical assistants. Several HCWs in these groups reported being in close proximity to one another while not wearing medical masks. Among HCWs, infection was thought to be associated with the use of a small break room and conference room. Discussion: Nosocomial SARS-CoV-2 infections occurred in two wards of a Tokyo hospital, affecting HCWs and patients. Not wearing masks was considered a key risk factor for infection during this outbreak; masks are now a mandated countermeasure to prevent the spread of SARS-CoV-2 infection in hospital settings.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , COVID-19/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Hospitals , Humans , Japan/epidemiology , Pandemics/prevention & control , Patients' Rooms , SARS-CoV-2 , Tokyo/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL